BESSEL'S EQUATION AND ITS SOLUTION: BESSEL'S POLYNOMIAL

Mimi Dan Dutta|Dept Of Physics | MMC College

Solution Of Bessel's Equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0 \tag{1}
\end{equation*}
$$

\square Let $y=\sum_{r=0}^{\infty} a_{r} x^{m+r}$ is a solution of the above equ.
So that, $\quad \frac{d y}{d x}=\sum_{r=0}^{\infty} a_{r}(m+r) x^{m+r-1}$
\square and $\frac{d^{2} y}{d x^{2}}=\sum_{r=0}^{\infty} a_{r}(m+r)(m+r-1) x^{m+r-2}$

Solution Of Bessel's Equation

- Substituting this in equ(1),

$$
\begin{array}{r}
x^{2} \sum_{r=0}^{\infty} a_{r}(m+r)(m+r-1) x^{m+r-2}+x \sum_{r=0}^{\infty} a_{r}(m+r) x^{m+r-1} \\
\quad+\left(x^{2}-n^{2}\right) \sum_{r=0}^{\infty} a_{r} x^{m+r}=0
\end{array}
$$

\square Rearranging this we will get,

$$
\sum_{r=0}^{\infty} a_{r}\left[(\boldsymbol{m}+r)^{2}-\boldsymbol{n}^{2}\right] x^{m+r}+\sum_{r=0}^{\infty} a_{r} x^{m+r+2}=\mathbf{0}
$$

Indicial Equation Of Bessel's Equation

Equating the co-efficient of lowest power term of x in equ(2), with zero, and putting $r=0$,

$$
a_{0}\left[(m+0)^{2}-n^{2}\right]=0
$$

Therefore, $\quad m^{2}=n^{2}$ i.e $m= \pm n$
\square Equating co-efficient of next lowest power term (x^{m+1}) with zero and putting $r=1$,

$$
a_{1}\left[(m+1)^{2}-n^{2}\right]=0
$$

Since $\quad\left[(m+1)^{2}-n^{2}\right] \neq 0 \quad \therefore \boldsymbol{a}_{1}=\mathbf{0}$

Recursion Relation

Equating the co-efficient of x^{m+r+2} in equ(2) with zero,

$$
\begin{aligned}
& a_{r+2}\left[(m+r+2)^{2}-n^{2}\right]+a_{r}=0 \\
& a_{r+2}=-\frac{1}{\left[(m+r+2)^{2}-n^{2}\right]} a_{r}
\end{aligned}
$$

Since $a_{1}=0$,Therefore, $a_{3}=a_{5}=a_{7}=0$
Now, for $r=0, \quad a_{2}=\frac{1}{\left[(m+2)^{2}-n^{2}\right]} a_{0}$

$$
\begin{aligned}
& \text { for } r=2, a_{4}=\frac{1}{\left[(m+4)^{2}-n^{2}\right]} a_{2}
\end{aligned}
$$

General Solution

Substituting the values of all coefficients,

$$
y=a_{0} x^{m}\left[1-\frac{1}{(m+2)^{2}-n^{2}} x^{2}+\frac{1}{\left[(m+4)^{2}-n^{2}\right]\left[(m+2)^{2}-n^{2}\right]} x^{4}-\cdots\right]
$$

\square For $m=n$,

$$
\begin{gathered}
y=a_{0} x^{n}\left[1-\frac{1}{4(n+1)} x^{2}+\frac{1}{4^{2} \cdot 2!(n+1)(n+2)} x^{4}-\cdots\right] \\
y=a_{0} x^{n} \sum_{r=0}^{\infty}(-1)^{r} \frac{x^{2 r}}{2^{2 r} \cdot r!(n+1)(n+2) \ldots \ldots(n+r)}
\end{gathered}
$$

Mimi Dan Dutta \| Dept Of Physics \| MMC college

Bessel Polynomial

\square Now if we put , $\quad a_{0}=\frac{1}{2^{n} \Gamma(n+1)}$

$$
y=\frac{1}{2^{n} \Gamma(n+1)} \sum_{r=0}^{\infty}(-1)^{r} \frac{x^{n+2 r}}{2^{2 r} \cdot r!(n+1)(n+2) \ldots \ldots(n+r)}=J_{n}(x)
$$

$$
\begin{aligned}
& I_{n}(x)=\left(\frac{x}{2}\right)^{n}\left\{\frac{1}{\Gamma(n+1)}-\frac{1}{1!\Gamma(n+2)}\left(\frac{x}{2}\right)^{2}+\frac{1}{2!\Gamma(n+3)}\left(\frac{x}{2}\right)^{4}\right. \\
&\left.-\frac{1}{3!\Gamma(n+4)}\left(\frac{x}{2}\right)^{6}+\cdots\right\}
\end{aligned}
$$

\square Using $\Gamma(n+1)=n$! we get,

$$
I_{n}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{r!(n+r)!}\left(\frac{x}{2}\right)^{n+2 r}
$$

Mimi Dan Dutta \| Dept Of Physics \| MMC college

Bessel Polynomial

\square Now if we put , $n=0$, we get,
$I_{0}(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(r!)^{2}}\left(\frac{x}{2}\right)^{2 r}=1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots$

If we put $\mathrm{n}=1, \quad I_{1}(x)=\frac{x}{2}-\frac{x^{3}}{2^{2} \cdot 4}+\frac{x^{5}}{2^{2} \cdot 4^{2} \cdot 6}+\cdots$

Zeroes of Bessel Function : Bourget's Hypothesis

When the function $I_{n}(x)$ are plotted on the same graph paper, though, none of the zeroes seem to coincide for different values of n except for the zero at $\mathrm{x}=0$.

Mimi Dan Dutta | Dept Of Physics I MMC college

